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Long memory, fractal statistics, and Anderson localization for chemical waves and patterns
with random propagation velocities
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An analytic approach is developed for computing the moments of concentration fields in a spatially inho-
mogeneous chemical system subject to environmental fluctuations, based on phase linearization. It is shown
that the environmental fluctuations lead to Anderson localization. If in the absence of environmental fluctua-
tions the system displays chemical waves periodic in space and time, then in the presence of fluctuations the
waves become localized in time and space. Two limit cases exist: for homogeneous chemical systems display-
ing chemical oscillations, the environmental fluctuations lead to damped oscillations, i.e., to temporal local-
ization, whereas for structured periodic patterns the localization occurs only in space. The validity of the
suggested approach is tested by investigating the behavior of one-dimensional reaction-convection systems
subject to time-dependent and space-independent velocity fluctuations. Computations are performed in the case
of non-Markovian Gaussian perturbations of the velocity field. Both analytical and numerical calculations
show that the Anderson localization of the concentration patterns is very strong for non-Markovian fluctuations
with long memory characterized by correlation functions of the negative power-law type. For infinite memory
the attenuation factors are Gaussian. For self-similar fractal random processes with long but finite memory, the
localization is less strong and the attenuation factor is given by a compressed exponential and has a shape
intermediate between a Gaussian and an exponential. Finally, for Markovian or independent random processes
the localization is weak and the attenuation is exponential. We suggest an experiment for testing the predicted
theoretical results and discuss the possibilities of generalizing the theory for reaction-convection systems with
thermal fluctuations and for Le´vy noise by using the Shlesinger-Hughes renormalization technique.
@S1063-651X~98!12304-8#
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I. INTRODUCTION

Anderson localization, i.e., the damping of a quantu
wave function in a disordered system, has been stud
within the context of quantum theory of condensed syste
@1#. Its understanding is of fundamental importance for
explanation of the electronic properties of disordered so
@2#. A temporal analog of Anderson localization is the s
chastic narrowing of line shapes in spectroscopy@3#. More
recently, the localization effect has been shown to exist a
for macroscopic classical systems, for instance, in the cas
electromagnetic or acoustic waves propagating in a di
dered medium@4#; its study has revealed some interesti
features of the interaction between the nonlinear beha
and the disordered structure of macroscopic systems and
been the basis of some applications, for example, in biom
cal engineering@5#. Special attention has been paid to t
study of wave propagation in disordered media obeying fr
tal statistics@6#. As far as we know, the possible existence
Anderson localization has not been discussed in theore
and experimental investigations of nonlinear chemical di
pative structures, chemical waves, and patterns. Article
this subject deal mainly with purely dissipative reactio
diffusion systems for which the reversible~convective! com-
ponent of motion is neglected; for such systems, Ander
localization is not significant. On the other hand, in the
erature of chemical engineering, much attention has b
571063-651X/98/57~4!/4003~13!/$15.00
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paid to the study of the waves and patterns generated by
balancing between the convective and diffusive transport
the chemical reactions operated far from equilibrium@7#.
However, the various phenomena investigated, altho
rather complex, do not include Anderson localization. T
purpose of this paper is to present a theoretical investiga
concerning Anderson localization of a structured chemi
system with a fluctuating propagation speed. We are in
ested in the effects of long memory and fractal statistics
the localization.

II. EVOLUTION EQUATIONS

Let us consider a multicomponent open chemical sys
described by the deterministic kinetic equations

Rl5Rl~C!, l 51,2, . . . , ~1!

whereC1(t),C2(t),... are theconcentrations at timet of the
different chemicals that make up the system andRl(C), l
51,2,..., are net reaction rates. The concentration fields
the system are the solution of the balance equations

]Cl~r ,t !/]t1“•Jl5Rl~C!, l 51,2, . . . , ~2!

whereJl are the mass fluxes of different chemicals maki
up the system. A complete description of the process can
given in terms of the balance equations~2!, together with the
4003 © 1998 The American Physical Society
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4004 57VLAD, ROSS, AND SCHNEIDER
hydrodynamic equations of the system that describe
mainstream flow and with the constitutive equations that
press the dependence of the mass fluxesJl on the state vari-
ables of the system. The time and space evolution of
concentration fields attached to the different chemicals of
system can be computed, at least in principle, by mean
the integration of the coupled evolution equations for su
able initial and boundary conditions.

The solutions of the evolution equations~2! depend on a
set of parametersq1(r ,t),q2(r ,t),..., that, in the presence o
environmental fluctuations, are stochastic functions of sp
and time. For example, these parameters may be the com
nents of the mainstream velocity at the entrance in the
tem or the input or output fluxes of the different chemic
present in the system. In general, the different concentra
fields Cl(r ,t), l 51,2, . . . arefunctionals of these param
eters and depend on the whole previous time evolution
q1(r ,t),q2(r ,t),...:

Cl~r ,t !5Cl@~r ,t !;q1~r 8,t8!,q2~r 8,t8!,...#, l 51,2, . . . .
~3!

The functional relations~3! can be determined by solving th
balance equations~2! with suitable initial and boundary con
ditions.

A particular problem that has been extensively studied
the literature is that of chemical waves or patterns t
emerge in the case when the parametersq1(r ,t),q2(r ,t),...
are kept constant. In this case the functional relations~3!
reduce to

Cu~r ,t !5Cu@v~k,q1
0,q2

0,...!t2k~q1
0,q2

0,...!•r #, ~4!

where the parametersq1(r ,t),q2(r ,t),... areassumed to be
constant:

q1~r ,t !5q1
0, q2~r ,t !5q2

0,..., ~5!

andCu5Cu(Qu) is a periodic function of the phase factor

Qu5v~k,q1
0,q2

0,...!t2k~q1
0,q2

0,...!•r . ~6!

The systems described by Eqs.~4!–~6! display concentration
waves that are periodic functions in both space and time
special situation is that of stationary periodic patterns,
which the concentration fields are periodic in space and t
independent; this case corresponds to zero frequency.

In this article we are interested in the study of the mo
complicated situation where the paramete
q1(r ,t),q2(r ,t),... fluctuate in a random way around the st
tionary valuesq1

0,q2
0,... . Weexpressq1(r ,t),q2(r ,t),... in

the form

qj~r ,t !5qj
01Dqj~r ,t !, j 51,2, . . . , ~7!

whereDqj (r ,t), j 51,2, . . . , are therandom components o
the parametersq1(r ,t),q2(r ,t),..., andassume that the sto
chastic properties of the random functions are known
characterized in terms of a probability density functional
e
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P@Dq~r 8,t8!#D@Dq~r 8,t8!#

with E E P@Dq~r 8,t8!#D@Dq~r 8,t8!#51, ~8!

whereD@Dq(r 8,t8)# is a suitable integration measure ov
the space of functionsDq1(r 8,t8),Dq2(r 8,t8),... and **
stands for the operation of path integration. In this cas
periodic solution of the form~4! does not exist anymore. Th
concentration fields are nonlinear functionals of the fluctu
ing components of the parametersq1(r ,t),q2(r ,t),...:

Cu~r ,t !5Cu@~r ,t !,Dq~r 8,t8!#, l 51,2, . . . . ~9!

Our purpose is to evaluate the momen
^Cu1

(r ,t1)Cu2
(r2 ,t2)¯& of the concentration fields in the

presence of environmental fluctuations, that is, when the
rametersq1(r ,t),q2(r ,t),... arerandom. These moments ar
given by the path integrals

^Cu1
~r1 ,t1!Cu2

~r2 ,t2!¯&

5E E Cu1
@~r1 ,t1!,Dq~r 8,t8!#

3Cu2
@~r2 ,t2!,Dq~r 8,t8!#¯P@Dq~r 8,t8!#

3D@Dq~r 8,t8!#. ~10!

In a chemical system subject to random environmental fl
tuations the observables that are usually accessible to
experimental measurements are the average concentr
fields ^Cu(r ,t)&, that is, the moments~10! of first order.

III. LINEAR PHASE APPROXIMATION
FOR SMALL FLUCTUATIONS

For simplicity we limit ourselves to the particular cas
when the fluctuations of the parameters are small. At fi
sight a reasonable idea would be to expand the depend
~3! in a functional Taylor series around the periodic solutio
corresponding toDq50 and to average the correspondin
Taylor series term by term:

Cu~r ,t !5Cu@Qu#1(
j
E E d

dDqj~r 9,t9!

3Cu@~r ,t !,Dq~r 8,t8!#U
Dq~r8,t8!50

3Dqj~r 9,t9!dr 9dt91¯ . ~11!

Unfortunately, such an approach is not useful because it g
erates secular terms that lead to physically absurd results
overcome this difficulty in this article we suggest a meth
of partial linearization, based on the expansion of the ph
factors in terms of the fluctuating components of the para
eters rather than on the expansion of the concentration fie
This method is somewhat similar to the Bogoliubo
Mitropolski @8# method of harmonic linearization used in th
theory of nonlinear oscillation, to the Van Kampen cumula
expansion method of constructing the solution of stocha
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57 4005LONG MEMORY, FRACTAL STATISTICS, AND . . .
differential equations@9#, and to Bourret’s@10#, Novikov’s
@11#, and Furutsu’s@4# methods developed for the study
electromagnetic or acoustic wave propagation in random
dia.

We start out by considering the periodic solutions cor
sponding toDq50 and expand them in a Fourier series

Cu~r ,t !5Cu@Qu#5(
2`

1`

Gu
0~m! exp~ imQu!. ~12!

For a given realization of the environmental fluctuation
DqÞ0 and the realization of the concentration fieldsCu(r ,t)
is no longer a periodic function. Nevertheless, it can be r
resented formally as the superpositions of the contributi
of different amplitude and phase factors:

Cu~r ,t !5(
2`

1`

G̃u
~m!@Dq~r 8,t8!#exp$ i Q̃u

~m!@Dq~r 8,t8!#%.

~13!

We emphasize that forDqÞ0 the expansion~13! is no
longer a Fourier series but reduces to the Fourier series~12!
in the limit Dq→0, that is, we have

G̃u
~m!→Gu

0~m! , Q̃u
~m!→mQu as Dq→0. ~14!

Equation~13! is a convenient representation of the conce
tration field by an infinite series, which in the limit case of
nonrandom environment reduces to the Fourier series~12!.
In general, the representation~13! is not unique. In order to
avoid any ambiguities we introduce a set of modified am
tude and phase functions, denoted byGu

(m) and Qu
(m) and

defined in such a way that the modified amplitude fact
Gu

(m) are independent of the fluctuation vectorDq:

Gu
~m!5Gu

0~m! independent ofDq, ~15!

Qu
~m!@Dq~r 8,t8!#5Q̃u

~m!@Dq~r 8,t8!#

2 i ln$G̃u
~m!@Dq~r 8,t8!#/Gu

0~m!%.

~16!

By using the notation in Eqs.~15! and ~16! the expansion
~13! becomes

Cu~r ,t !5(
2`

1`

Gu
0~m! exp$ iQu

~m!@Dq~r 8,t8!#%. ~17!

The main idea of our approach is that, in the case
small environmental fluctuations, the phase fact
Qu

(m)@Dq(r 8,t8)#, rather than the instantaneous concent
tion fieldsCu(r ,t), should be linearized

Qu
~m!@Dq~r 8,t8!#5mQu1(

j
E E d

dDqj~r 9,t9!

3Qu
~m!@Dq~r 8,t8!#uDq~r8,t8!50

3Dqj~r 9,t9!dr 9dt91¯ . ~18!

This approximation is similar to the eikonal approximati
from geometrical optics and to the WKB~quasiclassical! ap-
e-
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proximation from quantum mechanics or to the abov
mentioned techniques from the wave theory. Unlike the ‘‘n
ive’’ expansion ~11!, the approximation~18! does not
generate secular divergent terms. By combining Eqs.~17!
and ~18! we get the following expression for the instant
neous concentration fields:

Cu~r ,t !5(
2`

1`

Gu
0~m! exp$ imQu%

3expH i(
j
E E «u j

~m!~r 8,t8;r 9,t9!

3Dqj~r 9,t9!dr 9dt9J , ~19!

where the integration kernels«u j
(m)(r 8,t8;r 9,t9) are the func-

tional derivatives of the phase factorsQu
(m)@Dq(r 8,t8)#:

«u j
~m!~r 8,t8;r 9,t9!5

dQu
~m!@Dq~r 8,t8!#

dDqj~r 9,t9!
U

Dq~r8,t8!50

. ~20!

If the concentration fields are approximated by Eq.~19!,
then the path integral in Eq.~10! can be easily evaluated. W
introduce the characteristic functional of the probability de
sity functionalP@Dq(r 8,t8)#D@Dq(r 8,t8)#:

G@K ~r 8,t8!#5 K expH i E E K ~r 8,t8!•Dq~r 8,t8!dr 8dt8J L
5E E expH i EEK ~r 8,t8!•Dq~r 8,t8!dr 8dt8J

3P@Dq~r 8t8!#D@Dq~r 8,t8!#, ~21!

whereK (r 8,t8) is a suitable vectorial test function conjuga
to the vector of fluctuating environmental variabl
Dq(r 8,t8). It is well known from quantum field theory a
well as from mathematical statistics@12# that the logarithm
of the characteristic functionalG@K (r 8,t8)# can be ex-
pressed as a multivariate functional Taylor series in terms
the different powers of the components of the test funct
K (r 8,t8) where the coefficients of the expansion are giv
by the cumulants^^Dqn1

(r 8,t18)¯Dqnm
(rm8 ,tm8 )&& of the

fluctuating environmental variables@12#:

ln G@K ~r 8,t8!#

5 (
m51

`
i m

m! (
n151

A

¯ (
nm51

A E E ¯E E Kn1
~r18 ,t18!¯

3Knm
~rm8 ,tm8 !^^Dqn1

~r18 ,t18!¯Dqnm
~rm8 ,tm8 !&&

3dr18dt18¯drm8 dtm8 . ~22!
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By combining Eqs.~10!, ~19!, and~21!–~22! after lengthy calculations we arrive at the following expression for the mom
of the concentration fields:

K )
b51

B

Cub
~rb ,tb!L 5 (

u152`

1`

¯ (
u
B
52`

1`

exp@Hu1¯uB
# )

b51

B

$Gub

0~mb! exp@ imbQub
#%, ~23!

whereHu1¯uB
is a complex phase factor depending on all cumulants of the environmental fluctuating variables

Hu1¯uB
5 lnH K expS i (

b51

B

(
j
E E «ub j

~mb!
~r 8,t8;r 9,t9!Dqj~r 9,t9!dr 9dt9D L J 5(

j 51

`

i jHu1¯uB
~ j ! , ~24!

Hu1¯uB
~ j ! 5 (

n151

A

¯ (
nj 51

A
1

j ! E E E E dr18dt18dr19dt19¯E E E E dr j8dtj8dr j9dtj9

3 (
b151

B

«
ub1

n1

~mb1
!
~r18 ,t18 ;r19 ,t19!¯ (

b251

B

«
ub2

nj

~mb2
!
~r j8 ,t j8 ;r j9 ,t j9!^^Dqn1

~r18 ,t18!¯Dqnj
~r j8 ,t j8!&&. ~25!
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Equations~23!–~25! give a systematic cumulant expa
sion for the contributions of the fluctuations of different o
ders of the environmental variables to the moments of
concentration field. This expression can be used to show
the environmental fluctuations can produce Anderson lo
ization. Equation~24! is a Taylor expansion in terms of th
different powers of the imaginary unit and in general t
phase factorHu1 ....uB

has both an imaginary and a real pa

Hu1¯uB
5Re~Hu1¯uB

!1 i Im~Hu1¯uB
!,

which are made up of the contributions of the even and
powers in the series~24!, respectively. The imaginary pa
Im(Hu1¯uB

) produces an additional contribution to the pha

factorsmQu attached to the different harmonics of the Fo
rier series~12!, which results in a change of the frequen
and of the wave vector of the oscillations. On the other ha
the real part Re(Hu1¯uB

) may lead to either an increase or
decrease of the concentration fields, depending on whe
Re(Hu1¯uB

).0 or Re(Hu1¯uB
).0, respectively. The gen

eral assumptions made in this section are not detailed eno
to evaluate the sign of the real part of the complex ph
factor. However, in the particular case investigated in
following sections we have Re(Hu1¯u

B
),0, that is, the con-

centration fields display damping, which corresponds
Anderson localization. In general, for Re(Hu1¯uB

),0, the
localization occurs in both space and time. In the special c
where the system without environmental fluctuations is
mogeneous and displays periodic oscillations in time, in
~6! for the phaseQu we havek50 and the only effect of
environmental fluctuations is the temporal damping of
oscillations. For example, such an effect may be observe
a perfectly stirred continuous reaction~CSTR! with a ran-
dom flow rate. Another particular case corresponds to
situation where the system without fluctuations display
stationary concentration profile periodic in space. In this c
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the system displays localization in space in the presenc
environmental fluctuations. This effect may be observed
the case of an oscillatory chemical reaction operated in
ideal tubular reactor, the case investigated in detail in
remaining sections of the article.

IV. CONCENTRATION FIELDS IN IDEAL
TUBULAR REACTORS

The general approach suggested in the preceding se
to analyze the influence of environmental fluctuations o
chemical wave or pattern has been inspired by similar
proaches suggested in the literature for electromagnetic
acoustic waves. In both cases the linear phase approxima
is used to avoid the occurrence of the spurious secular te
and the main assumptions are the same for the two type
models. Despite this formal analogy, the detailed structure
the mathematical equations is different for the two types
models, mainly due to the different origin of the period
behavior. For an acoustic or electromagnetic wave the p
odic behavior is generated by an inertial effect due to
mathematical structure of Newton’s or Maxwell’s equation
for these waves the oscillations exist even when the ev
tion equations are linear. For a chemical system, howe
the origin of the oscillations is different: It is a nonequilib
rium effect generated by the nonlinear feedback coupl
among the different individual reaction steps. Due to the
trinsic nonlinearity of the kinetic equations, the evolution
chemical waves or patterns in a random environment is m
harder to study.

For a rather particular case of structured chemical syst
a detailed analysis is, however, possible. This case co
sponds to a reaction-convection system characterized b
mainstream flow characterized with a possibly tim
dependent but space-independent overall velocity, whic
the same for all chemicals in the system and for which
contribution of molecular or turbulent diffusion can be n
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glected. Although at first sight these constraints seem to
very restrictive, they are commonly discussed in the lite
ture for the description of a common device used for
experimental study of chemical processes, the reaction
@13#. A reaction tube~or tubular reactor! is basically a pipe
along which a reaction mixture flows under controlled co
ditions. The dimensions of the device, as well as the ot
parameters of the system such as the flow rate and the
perature or the pressure, are chosen in such a way tha
main contribution to the mass transport is given by the ma
stream flow, the molecular and turbulent diffusion can
neglected, and the flow velocity is basically the same at
position along the pipe. If the velocity along the reacti
tube at timet is v(t) then the evolution equations~2! reduce
to

]

]t
Cl~r ,t !1v~ t !

]

]x
Cl~r ,t !5Rl~C!, l 51,2, . . . .

~26!

A typical experiment in a reaction tube is carried out
continuously introducing known amounts of different chem
cals at the entrance of the reaction tubex5x0 . If the input
concentrations of the different chemicals at timet, Cl(x
5x0 ,t)5Cl

in(t), l 51,2, . . . , areknown functions of time,
then they provide a set of boundary conditions for the par
differential equations~26!

C~x5x0 ,t !5Cin~ t ! with Cin~ t !5@Cl
in~ t !#. ~27!

The characteristics of the partial differential equations~5! are
the solutions of the ordinary differential equations

dt5
dCl

Rl~C!
5

dx

v~ t !
, l 51,2, . . . . ~28!

The set of characteristic equations~28! is made up of a set o
deterministic evolution equations characterizing the ti
evolution of a homogeneous chemical system with the
equations given by Eq.~1!,

dCl

dt
5Rl~C! with C~ t50!5C0 , l 51,2, . . . ,

~29!

as well as by the additional relationship

dx/dt5v~ t !, ~30!

which gives a Lagrangian description of the flow process
Eqs. ~29! Rl(C) are nonlinear functions of the compositio
vector and because of that Eqs.~29! can be solved analyti
cally only in exceptional cases. In the following, howeve
we assume that the solutions of these equations

C~ t !5J~C0 ;t !, i.e., Cl~ t !5J l~C0 ;t !, l 51,2, . . . ,
~31!

are known for any values of the initial concentrations and
the time variable; for instance, they have been determine
numerical integration or from the experimental analysis
the system.
e
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From the theory of partial differential equations it follow
that the general solutions of the balance equations~26! can
be expressed as arbitrary functions of the solutions~31! of
the homogeneous kinetic equations~29!. These arbitrary
functions can be determined in terms of the boundary con
tions ~27!. A simple calculation leads to the following ex
pression for the time and space variation of the concentra
fields along the reaction tube~similar computations are pre
sented in the literature of chemical engineering@13,14#!:

C~x,t !5J@Cin
„h~x,t !…;t2h~x,t !#, ~32!

whereh(x,t) is the solution of the functional equation

x5E
h~x,t !

t

v~ t8!dt8 ~33!

and J(C0 ;t) is the vector of the solutions of the evolutio
equations~29! for the homogeneous system corresponding
the initial conditionC(t50)5C0 . The vector of solutions
~32! of the evolution equations~26! is determined com-
pletely by the solutionJ(C0 ;t) of the kinetic equations~29!
of the homogeneous system and by the functionh(x,t),
which depends on the velocityv(t) along the reaction tube
If the solution of the ordinary differential equations
known, then Eq.~32! allows us to make predictions concer
ing space and time dynamics of the concentration fie
along the reaction tube.

V. ASYMPTOTIC BEHAVIOR WITHOUT
ENVIRONMENTAL FLUCTUATIONS

Analytical solutions similar to the solution~32! of the
balance equation~26! have been reported; Eq.~32! includes
as a particular case the expressions for the stationary con
tration profiles along a reaction tube presented in the che
cal engineering literature@13,14#. This particular case corre
sponds to the situation where the kinetic equations~29! for a
homogeneous system have a unique stationary poinC
5J* (C0) that is globally stable. In this case for large tim
the transient solutions of the kinetic equations tend towa
C5J* (C0):

lim
t→`

J~C0 ;t !5J* ~C0! ~34!

independently oft. If the same experiment is carried out in
reaction tube, the propagation speed is time independen

v5v0 , ~35!

and the input concentrations are independent of time

Cin~ t !5C0 , ~36!

then in the long run the concentration profiles along the
action tube become stationary. In this case we have

h~x,t !5t2x/v0 ~37!

and from Eqs.~32!–~37! it follows that

lim
t→`

C~x,t !5C* ~x! ~38!
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4008 57VLAD, ROSS, AND SCHNEIDER
independently oft, where the vectorC* (x) of stationary
concentration profiles is given by the transient solution of
kinetic equations of the homogeneous system with the t
variable replaced by the residence time of the fluid eleme
in the reaction tube at positionx,

C* ~x!5J„C0 ;z~x!…, ~39!

with

z~x!5x/v0 . ~40!

In particular, for very long reaction tubesx→`, the vector
of stationary concentration profiles tends towards the stat
ary point of the kinetic equations~1! of the homogeneous
system

lim
x→`

C* ~x!5J* ~C0! ~41!

independently ofx.
In the following we apply our general relation to the mo

interesting situation in which, in the long run, the homog
neous system tends towards a normal kinetic regime tha
variable in time, independent of the initial preparation of t
system, and corresponds to a stable limit cycle

lim
t→`

C~ t !5J* ~ t ! ~42!

independently ofC0 . We start out by considering the pa
ticular case where the velocity along the reaction tube
constant and therefore the functionh(x,t) is given by Eq.
~37!. In this case, after a sufficiently large time the conce
trations along the reaction tube become stationary~i.e., time
independent! and are functions only of the positionx. In
particular, if for the homogeneous system the asymptotic
havior corresponds to a stable limit cycle, then the vecto
function J* (t) is made up of components that are period
functions of time@15#. In this case the corresponding inh
mogeneous system displays periodic stationary chemical
terns along the reaction tube, characterized by a perio
space variation of the corresponding chemicals

lim
t→`

C~x;t !5C* ~x! ~43!

independently oft, where the stationary vector of the co
centration fieldsC* (x) is given by

C* ~x!5J* „z~x!…. ~44!

We express the components of the normal solutionJ* (t) in
a temporal Fourier series

Ju* ~ t !5(
2`

1`

gu
~m! exp~ imvt !

5C̃u* 1 (
m51

`

Au
~m! cos~mvt2wu

~m!!, ~45!

wherev/2p is the frequency of the limit cycle, the terms
e
e
ts

n-

-
is

is

-

e-
l

at-
ic

C̃u* 5
v

2p E
2p/v

1p/v

Cu* ~ t1a!da ~46!

are the temporal averages of the concentrations, and

gu
~m!5

v

2p E
2p/v

1p/v

exp~2 ivma!Cu* ~ t1a!da, ~47!

Au
~m!5

v

p H F E
2p/v

1p/v

sin~vma!Cu* ~ t1a!daG2

1F E
2p/v

1p/v

cos~vma!Cu* ~ t1a!daG2J 1/2

, ~48!

wu
~m!5arctanH E

2p/v

1p/v

sin~vma!

3Cu* ~ t1a!daY E
2p/v

1p/v

cos~vma!

3Cu* ~ t1a!daJ ~49!

are the complex and real amplitudes and the phase angle
the different harmonics, respectively. The stationary conc
tration profiles along the reaction tube can be expressed
similar spatial Fourier series

Cu* ~x!5(
2`

1`

gu
~m! exp~ imkx!

5C̃u* 1 (
m51

`

Au
~m! cos~mkx2wu

~m!!, ~50!

where the wave numberk is given by the dispersion relatio

k5v0 /v. ~51!

Thus we have shown that in the long run the concentra
profile is a time-independent periodic function of position

Strictly speaking, for a stable limit cycle the normal sol
tions J* (t) of the kinetic equations~1! of the homogeneous
system are different for different initial conditions. Howeve
their shape is identical, that is, they are the same up t
constant phase difference. In mathematical terms, given
normal solutionsJ(1)* (t) and J(2)* (t), the solutionJ(1)* (t)
can be obtained fromJ(2)* (t) and vice versa by changing th
origin of the time axis. The two solutions are characteriz
by the same amplitude factorsC̃u* and Au

(m) and the differ-
ences between their phaseswu(1)

(m) andwu(2)
(m) is independent of

time and proportional to the harmonic labelm. Similarly, the
stationary concentration profiles given by Eq.~27! have the
same shape for any values of the boundary conditionsx
5x0 and only their phases are different.

VI. ANDERSON LOCALIZATION IN TUBULAR
REACTORS

The next step in our analysis is to consider the more g
eral case for which the speed along the reaction tube is m
up of two components: a constant componentv0 and a ran-
domly fluctuating componentDv(t),
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v~ t !5v01Dv~ t !. ~52!

As we are interested in the influence of long memory
localization, we assume that the stochastic process des
ing the random behavior of the fluctuating componentDv(t)
may have certain self-similar statistical fractal features.
make the following choices:~a! the moments and cumulan
of Dv(t) are finite and the statistical fractal features a
given by the shape of the correlation functions, which
assumed to be described by negative power laws of time,
~b! the moments and cumulants ofDv(t) are infinite and the
stochastic process is of the Le´vy type. In this article we limit
ourselves to the study of case~a!; work on Lévy statistics is
in progress and will be presented elsewhere. We assume
the fluctuations of velocity are symmetric, small, and d
scribed by a stationary Gaussian stochastic process. The
chastic properties of a Gaussian stochastic process are
pletely characterized by its cumulants of first and seco
order. For Gaussian statistics, since the stochastic proce
symmetric and stationary, the cumulant of first order
Dv(t), ^^Dv(t)&&, which is the same as the average va
^Dv(t)&, is equal to zero,

^^Dv~ t !&&5^Dv~ t !&50, ~53!

and the cumulant of second order ofDv(t),
^^Dv(t1)Dv(t2)&&, which is the same as the correlatio
function^Dv(t1)Dv(t2)&, is symmetric and depends only o
the absolute value of the time differences and is indepen
of the individual times

^^Dv~ t1!Dv~ t2!&&5^Dv~ t1!Dv~ t2!&5F~ ut12t2u!.
~54!

Different expressions for the correlation functio
F(ut12t2u) correspond to different types of stochastic pr
cesses. IfF(ut12t2u) is independent of time, then the pro
cess has infinite memory, whereas for a negative power-
dependence the process has long but finite memory. S
larly, for a Markovian process with short memory the cor
lation function is an exponential and for an independent r
dom process without memory is given by ad function.

The probability of a fluctuating path attached to t
Gaussian stochastic process introduced before can be
acterized by a probability density functional of the Wien
type:

P@Dv~ t8!#D@Dv~ t8!#

5expH 2
1

2 E
2`

1`E
2`

1`

G@ ut12t2u#

3Dv~ t1!Dv~ t2!dt1dt2J D@Dv~ t8!#, ~55!

whereD@Dv(t8)# is the usual Gaussian Wiener integrati
measure@12# and G(x) is the solution of the convolution
equation
n
ib-

e

e
nd

hat
-
to-
m-
d
s is
f
e

nt

-

w
i-

-
-

ar-
r

E
0

x

G~y!F~x2y!dy5d~x!. ~56!

Due to the fluctuations of the velocity along the reacti
tube the concentrations of the different chemicals are fluc
ating quantities. For a given realization of the stochastic p
cess the concentrations are no longer stationary but dep
on both space and time. Nevertheless, in the long run t
time and space variation can be expressed in terms of
Fourier representation~50! of the limit cycle corresponding
to the chosen homogeneous system

Cu* @Dv~ t8!;x,t#5(
2`

1`

gu
~m! exp„imv$t2h@Dv~ t8!;x,t#%….

~57!

In this case both the random realizationsCu* @Dv(t8);x,t#
and the functionh@Dv(t8);x,t# are functionals of the ran
dom contributionDv(t) to the velocity along the reaction
tube. The macroscopic concentration fields are ensemble
erages with respect to the fluctuations ofDv(t). These en-
semble averages express the mean behavior of a statis
ensemble of realizations of the type~57! and can be ex-
pressed as a path integral in terms probability density fu
tional ~55!,

^Cu* @Dv~ t8!;x,t#&

5E E (
2`

1`

gu
~m! exp„imv$t2h@Dv~ t8!;x,t#%…

3P@Dv~ t8!#D@Dv~ t8!#, ~58!

where** stands for the operation of path integration.
Since we have assumed that the fluctuations of the c

ponent Dv(t) are small, most realizations ofDv(t) are
smaller than the constant componentv0 and the functional
h@Dv(t8);x,t# can be approximated by the sum of the fir
two terms in its functional Taylor expansion

h@Dv~ t8!;x,t#'h@Dv~ t8!50;x,t#

1E «~x,t,t9!Dv~ t9!dt9, ~59!

where the coefficient«(x,t,t9) is given by the functional
derivative

«~x,t,t9!5
dh@Dv~ t8!50;x,t#

dDv~ t9!
. ~60!

The first term in the expansion~59! is given by the function
h@Dv(t8);x,t# corresponding to a constant velocityv0 and
can be computed from Eq.~37!:

h@Dv~ t8!50;x,t#5t2x/v0 . ~61!

Similarly, the coefficient«(x,t,t9) can be computed by re
writing Eq. ~33! in the form
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x5v0$t2h@Dv~ t8!;x,t#%1E
h@Dv~ t8!;x,t#

t

Dv~ t8!dt8

~62!

and by evaluating the variation ofh@Dv(t8);x,t# with re-
spect todDv(t8) and by makingDv(t8)50 in the resulting
expression. After performing these computations we obta

«~x,t,t9!5
1

v0
Fu~ t !2uS t2

x

v0
D G , ~63!

where u(t) is the Heaviside step function. By using Eq
~59!–~63! we can express the path average~58! in the form

^Cu* @Dv~ t8!;x,t#&5(
2`

1`

gu
~m!T~m!~x,t !exp~ imkx!,

~64!

whereT(m)(x,t) are amplitude factors given by the Gaussi
functional integrals

T~m!~x,t !5E E expS 2 1
2 E

2`

1`E
2`

1`

G@ ut12t2u#

3Dv~ t1!Dv~ t2!dt1dt2

1 imkE
t2x/v0

t

Dv~ t8!dt8DD@Dv~ t8!#. ~65!

The path integral in Eq.~42! can be evaluated analyt
cally, resulting in

T~m!~x!5expF2
m2v2

~v0!2 JS x

v0
D G , ~66!

independently oft, where

J~b!5E
0

b

~b2u!F~u!du. ~67!

We notice that the amplitude factorsT(m)(x) are real and
symmetric with respect to the harmonic labelm @T(1m)(x)
5T(2m)(x)# and independent of time. It follows that th
average concentration profiles^Cu* @Dv(t8);x,t#& can be ex-
pressed in the form

^Cu* @Dv~ t8!;x,t#&5C̃u* 1 (
m51

`

Au
~m! cos~mkx2wu

~m!!T~m!~x!

5C̃u* 1 (
m51

`

Au
~m! cos~mkx2wu

~m!!

3expF2
m2v2

~v0!2 JS x

v0
D G , ~68!

independently oft.
The superior moments of the concentration fields can

computed in a similar way. In particular, the moments
orderq at positionx can be written as
e
f

K )
b51

q

Cub
* @Dv~ t8!;x,t#L

5E E (
2`

1`

¯(
2`

1`

)
b51

q

~gub

~m!!expF i S (
b51

q

mbD
3v$t2h@Dv~ t8!;x,t#%GP@Dv~ t8!#D@Dv~ t8!#.

~69!

In Eq. ~69! for small speed fluctuations the ensemble aver
can be expressed also in terms of the amplitude fac
T(m)(x,t). After some calculations we obtain

K )
b51

q

Cub
* @Dv~ t8!;x,t#L

5 (
u150

1`

¯ (
uq50

1`

)
b51

q

$Aub

~mb! cos@mubkx2wub

~mb!
#%T

3expS (
b

mbD ~x!, ~70!

where

Au
~0!5C̃u* , wu

~0!50. ~71!

From the above calculations it follows that, even thou
for a fluctuating speed the different realizations of the co
centration fields are functions of space and time, their
semble averages are time independent. Concerning the s
dependence, we notice that in the spatial Fourier series~45!
each harmonic term is damped with a factorT(m)(x). This
behavior corresponds to the Anderson localization of
reaction-convection chemical patterns. The intensity
damping of the harmonicm can be characterized by th
damping factorT(m)(x), which, for fluctuations of the veloc
ity field different from zero, decreases from the maximu
valueT(m)(x50)51 to zero in the limitt→`. In terms of
this factor we can define a damping length scaleld

(m) . In
analogy to the Anderson length scale from the literat
@1,2#, ld

(m) corresponds to a decrease of the damping fac
T(m)(x) from the initial value 1 toT(m)51/e. ld

(m) is the
solution of the equation

2 ln@T~m!~x!#5
m2v2

~v0!2 JS ld
~m!

v0
D 51. ~72!

The reciprocal value ofld
(m) ,

«u
~m!51/ld

~m! , ~73!

is a measure of the strength of the localization of t
convection-reaction chemical patterns.

The strength of localization is determined by the type
stochastic process describing the fluctuations of the m
stream velocity. We consider the following particular cas

(i) Systems with static disorder.For such systems the fluc
tuations of velocity, once they have arisen, last forever. T
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stochastic process describing the speed fluctuations has
nite memory and the correlation function is constant,

^^Dv~ t1!Dv~ t2!&&5^Dv~ t1!Dv~ t2!&5F, ~74!

the damping factors have a Gaussian shape

T~m!~x!5expF2
m2v2F

~v0!4 x2G , ~75!

and the damping length is given by

ld
~m!5~v0!2/mvAF. ~76!

(ii) Self-similar (statistical fractal) fluctuations.In this
case the correlation function of fluctuations has a long tai
the negative power-law type

^Dv~ t1!Dv~ t2!&5F~ ut12t2u!5Mut12t2u2s,

M.0, 1.s.0, ~77!

where 1.s.0 is a fractal exponent between zero and un
The amplitude factors and the localization length are giv
by

T~m!~x!5expF2
m2v2M

~12s!~22s!~v0!42s x22sG , ~78!

ld
~m!5F ~12s!~22s!~v0!42s

m2v2M G1/~22s!

. ~79!

(iii) Markovian fluctuations.For Markovian fluctuations
the correlation function of the velocity decreases expon
tially with increasing time difference (t12t2):

^Dv~ t1!Dv~ t2!&5F~ ut12t2u!

5^@Dv~0!#2&exp@2Vut12t2u#, ~80!

whereV is the decay rate of the velocity fluctuations. W
have

T~m!~x!5expH 2
m2v2^@Dv~0!#2&

~v0!2V2

3FVx

v0
211expS 2

Vx

v0
D G J . ~81!

In this case the damping length cannot be evaluated ana
cally in the general case. We distinguish two subcategor

(a) Slow fluctuations(V;0). We have

T~m!~x!5expF2
m2v2^@Dv~0!#2&

2~v0!4 x2G , V;0 ~82!

ld
~m!5~v0!2/mvA^@Dv~0!#2&, V;0. ~83!

(b) Fast fluctuations(V@0). We obtain

T~m!~x!5expF2
m2v2^@Dv~0!#2&

V~v0!3 xG , V@0 ~84!
fi-

f

.
n

-

ti-
s.

ld
~m!5

V~v0!3

m2v2^@Dv~0!#2&
, V@0. ~85!

(iv) Independent fluctuations.In this case the fluctuation
of speed are independent and the correlation function is
resented by ad function

^Dv~ t1!Dv~ t2!&5F~ ut12t2u!52Deffd~ ut12t2u!, ~86!

whereDeff is an effective diffusion coefficient. In this cas
the amplitude factors have an exponential shape

T~m!~x!5expF2
2m2v2Deff

~v0!3 xG , ~87!

ld
~m!5

~v0!3

m2v2Deff
. ~88!

Equations~86! and~87! are a particular case of Eqs.~80! and
~81! derived for Markovian fluctuations. Equation~86! can
be derived from Eq.~80! by assuming that the rateV of
fluctuation regression tends to infinity and the dispersion
speed fluctuation̂ @Dv(0)#2& tends to zero subject to th
constraint that their product remains constant:

V→`, ^@Dv~0!#2&→0

with Deff5
1
2 V^@Dv~0!#2&5const. ~89!

The limit ~89! is of the diffusion type.
The above analysis shows that the Anderson localiza

of a reaction-convection chemical pattern is influenced
the type of stochastic process describing the dynamics
velocity fluctuations. The localization effect increases w
the memory of the stochastic process. For infinite mem
the damping factors are Gaussian. For finite, self-sim
long memory the damping of the chemical patterns is l
pronounced and is described by a stretched exponential.
Markovian processes with short memory the localization
chemical patterns is even slower and the tails of the atte
ation factors are exponential. Finally, for independent r
dom processes without memory the localization is expon
tial for any distance, short or long. Further the analy
shows that there is a close relation between localization
the self-similar features of the fluctuations: For the syst
studied long memory corresponds to self-similarity and
the strength of the memory effect increases, the efficienc
the localization increases.

To illustrate this effect we have performed a numeric
study of localization in a reaction convection system of t
Sel’kov type@16#. The Sel’kov model is given by the reac
tion scheme

A�
k21

k1

X, X12Y�
k22

k12

3Y, Y�
k23

k13

B, ~90!

whereA and B are stable species with concentrations ke
constant by an interaction with large external reservoirs
X andY are reaction intermediates with concentrations va
able in time. In a homogeneous system the reaction me
nism ~90! may display a stable limit cycle for certain value
of the rate coefficients and of the concentrations of sta
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4012 57VLAD, ROSS, AND SCHNEIDER
speciesA andB. The kinetic equations of the Sel’kov mod
~90! are integrated numerically. For large times the proces
approaching a stable limit cycle and the time variation ofX
and Y becomes periodic. The periodic motion ofX is ana-
lytically continued for any values of the time axis, from2`
to 1`, and the corresponding function are subject to Fou
analysis; we have computed the phases and the amplitud
the first ten harmonics. By using the general analysis de
oped in this article the Fourier components are used to c
pute the periodic stationary patterns that emerge for l
times in a reaction tube characterized by different flow ra
To avoid the complications generated by the nonperiodic
havior of the concentration profiles at the beginning of
reaction tube we have assumed that the reaction tube ha
infinite length and that the chemicals are introduced into
system either atx0→2` or at x0→1`. According to the
dispersion relation~51!, different propagation speedsn0
along the reaction tube correspond to different values of
wave numberk5n0 /v. The wave number, just like the co
ordinatex along the reaction tube, can take any real va
from 2` to 1`. A positive value ofk5n0 /v corresponds
to a positive value ofn0 and in this case the reagents a
introduced into the system atx0→2`; similarly, a negative
value ofk5n0 /v corresponds to a negative propagation v
locity and in this case the chemicals are fed atx0→1`. For
an infinite system without fluctuations the concentration fi
is a double periodic function in bothx andk. Figure 1 dis-
plays a three dimensional representation of the concentra
of the chemical speciesX as a function of position and th
wave vector. Notice the perfect symmetry of the field w
respect to the permutation of variablesx andk; this symme-
try is a consequence of the structure of the Fourier repre
tation ~50! of the concentration field.

In addition, we have investigated the effect of differe
types of noise on the dependence of the concentration fi
Figure 2 displays the localization effect due to stocha
fluctuations with infinite memory. In this case the localiz
tion effect is very strong; it is interesting that in spite of t
localization in space, for infinite memory the concentrati

FIG. 1. Space and wave-number dependence of the statio
concentration field of the active intermediateX for the Sel’kov
model operated in an infinite reaction tube. The concentration
file is stationary, periodic both in position and in wave numberk,
and is invariant to the permutation ofx andk.
is
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field is still symmetric with respect to the permutation ofx
and k. For long but finite memory the fluctuations of th
random component of the velocity are self-similar and
localization effect is still strong; however, in this case t
localization effect acts in different ways along the axes,
spectively ~Fig. 3!. For both Markovian and independen
processes the localization is weak. The results of our num
cal computations are practically identical in these two ca
~see Fig. 4!; we cannot identify any differences because
the limited number of harmonics used in our computatio
In these two cases the symmetry of the localized field w
respect to the permutation ofx andk is restored.

ry

o-

FIG. 2. Space and wave-number dependence of the ense
average of the concentration of the active intermediateX for the
Sel’kov model operated in an infinite reaction tube and subjec
random velocity fluctuations with infinite memory. The localizatio
is very strong and, although the different random realizations of
concentration profile are time dependent, the ensemble avera
stationary and invariant to the permutation ofx andk.

FIG. 3. Space and wave-number dependence of the ense
average of the concentration of the active intermediateX for the
Sel’kov model operated in an infinite reaction tube and subjec
random velocity fluctuations with long but finite memory charact
ized by a fractal exponentH51.2. The localization is still strong
and the ensemble average is also stationary, but it is no lon
invariant to the permutation ofx andk.
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VII. DISCUSSION

The main results obtained in this article are the followin
~i! A general approach for analyzing the behavior

chemical waves and patterns in a random medium with sm
fluctuations has been developed, based on the metho
phase linearization. The approach leads to a cumulant s
expansion expressing the contributions of environme
fluctuations to the moments of the concentration fields.

~ii ! It has been shown that the environmental disor
may lead to Anderson localization.

~iii ! The general approach developed in the article
been applied for the evaluation of the average concentra
fields in the case of a chemical oscillator operated in
one-dimensional ideal tubular reactor.

~iv! If the time evolution of a chemical oscillator operate
in a homogeneous, well-stirred reactor is approximated fo
finite period of time by a stable limit cycle, then the sam
process operated in a reaction tube with constant velo
displays periodicity in space for a finite characteristic leng
Theoretically, if the chemical oscillator operated in a hom
geneous reactor evolves towards a time-dependent no
regime corresponding to a stable limit cycle, then the sa
process operated in a reaction tube with constant velo
tends towards a stationary regime characterized by chem
patterns periodic in space. Although this statement is m
ematically correct, it is very hard to find a real chemic
system for which it actually occurs. In the first place, even
a homogeneous system, a stable limit cycle cannot be m
tained forever. In the case of the Sel’kov model conside
in this paper@Eq. ~90!# the limit cycle may occur only if the
concentrations of stable speciesA andB are kept constant. In
a closed homogeneous system the time invariance ofA and
B can be accomplished for a finite time period by introdu
ing initially a large excess of these two reagents in the s
tem. As the process goes on, eventually the concentration
A andB vary in time, resulting in the destruction of the lim
cycle. A similar phenomenon takes place in an ideal reac
tube. If in the input flux the reagentsA and B are in large

FIG. 4. Space and wave-number dependence of the ense
average of the concentration of the active intermediateX for the
Sel’kov model operated in an infinite reaction tube and subjec
random velocity fluctuations with short memory~Markovian! or
without memory. The localization is weak; the ensemble averag
stationary and invariant to the permutation ofx andk.
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excess, then for small to moderately large distances from
entrance in the reactor their concentrations are practic
constant and the concentrations ofX andY are approaching
a periodic regime corresponding to a limit cycle. For lar
values of the space coordinate, however, the concentrat
of A andB are no longer constant, the oscillations inX and
Y are damped, and eventually the limit cycle is destroye

~v! If the mainstream velocity is subject to a small rando
perturbation described by a stationary Gaussian random
cess then the ensemble average of stationary concentr
fields displays the phenomenon of localization. The stati
ary chemical patterns are no longer periodic, but disp
damped oscillations along the reaction tube. The strengt
localization depends on the memory of the velocity fluctu
tions and increases with increasing memory effects.

The results presented in this article have been derived
using a method of phase linearization that is less restric
than the linearization of the kinetic equations. Within o
approach the underlying deterministic kinetic equations
nonlinear and no attempt has been made to linearize th
The assumption made is that the main contribution of
velocity fluctuations of the phases of different chemicals
of first order with respect to the variationDn of velocity. Our
technique is a stochastic analog of the Bogoliubo
Mitropolskii technique of harmonic linearization@8#. Our
analysis shows that even the slightest fluctuations of velo
lead to the localization of the chemical patterns.

The example used to illustrate our approach has been
lyzed by assuming the validity of the model on an ide
tubular reactor. Although very popular in the literature
chemical engineering, this model gives only an approxim
description of the real systems. For laminar flows there
distinct velocity variations in the radial direction~normal to
the flow!. In such a case the flow cannot be described
uniform in the radial direction, but may be approximated
a plug flow on which a~Taylor! axial dispersion is superim
posed. On the other extreme of strong turbulence, the lo
tudinal turbulent dispersion may have an important contri
tion to the mass transport. Despite these limitations,
believe that the application of our approach to the case
ideal tubular reactors is more than a simple academic e
cise: A detailed theoretical analysis is possible yet, des
its simplicity, it leads to Anderson localization.

An interesting problem is related to the possible expe
mental identification of the localization of reaction
convection chemical patterns. The analysis presented in
paper is based on the assumption that the velocity fluc
tions along the reaction tube are space independent. Suc
assumption holds for relatively slow chemical processes
which the chemical time scales are at least an order of m
nitude smaller than the mechanical time scale character
of the propagation of the velocity fluctuations along the
action tube. We suggest an experimental installation o
computer-controlled pump coupled to a tubular reactor a
repeated measurement of the concentration profiles along
reaction tube corresponding to different realizations of
fluctuations of the speed generated by the computer. If
number of experiments is large enough we predict that
ensemble average of the concentration profiles evalu
from the measured data displays localization. Because of
limitations of the model of ideal tubular reactors, we do n
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expect quantitative agreement with the theory; neverthel
we predict localization.

At least in principle, the general approach suggested
this article can be applied to any structured chemical syst
involving various phenomena such as molecular or turbu
diffusion, mainstream hydrodynamic flow, and nonline
chemical reactions. However, the application presente
limited to the study of convection-reaction systems. T
mathematical structure of these systems makes possib
detailed analytical treatment of the problem of Anderson
calization. The majority of the physicochemical literatu
dealing with inhomogeneous nonlinear chemical syste
however, consider only reaction-diffusion systems. The
called chemical waves are completely different from the
riodic patterns considered in this article. A chemical wave
generated by the competition between a chemical pro
and molecular diffusion. Because of this, the velocityv of
propagation of a chemical wave increases not only with
creasing diffusion coefficientD but also with increasing re
action rateR

v;ADR. ~91!

Therefore, a perturbation of a nonlinear reaction diffus
system will spread quite fast and the corresponding propa
tion rate is process dependent. For such a system the no
behavior corresponds to the generation of nonstation
phase waves rather than the stationary patterns characte
of reaction convection systems discussed in this arti
However, even for a pure reaction-diffusion system a stati
ary pattern can be observed under certain conditions. It
been shown on the basis of local bifurcation theory t
standing waves may be found in systems with at least th
variables and unequal diffusion coefficients~long-range cou-
pling @17–19#!. The type of stationary pattern discussed
this paper is different; it is generated by the balance betw
the generation and consumption of the chemicals and
convective transport. We expect that our description is fa
correct for systems for which the convective transport o
weighs the contribution of molecular and turbulent diffusi
transport.

An interesting problem is related to the interpretation
the relations between the memory of the speed fluctuat
and the localization effect. The localization displayed by
ensemble average of the concentration profile is due to
destructive interference of the different realizations of
relative fluctuations of the concentration fields that make
m
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the ensemble. As the strength of fluctuations increases
the increase of the memory effects it follows that for lo
memory the destructive interference leads to stronger da
ing, which is consistent with the results of our calculation

Concerning future research, five general problems ar
The first problem is related to the possibilities of genera
ing our approach for processes in which diffusion cannot
neglected. In view of the general considerations ab
reaction-diffusion systems mentioned above, we norma
expect that in this case stationary patterns do not exist; h
ever, the Anderson localization can be present also in
case of nonstationary fields. The second problem is of
interaction between the internal thermal fluctuations of
system and the external fluctuations of the mainstream
locity. This type of problem can be dealt with by using th
theory of processes with dynamical disorder@20#. To solve it
we should develop a Fourier analysis of fluctuating conc
tration fields and suitable methods of dynamical averagi
The third problem is the investigation of the influence
environmental fluctuations in systems displaying quasip
odic or chaotic behavior@21#. The fourth problem is related
to the generalization of our approach for the case when
moments of fluctuation are infinite and the stochastic proc
obeys Lévy statistics; for this type of system the tails of th
probability distributions display self-similarity rather tha
the correlation functions. The generalization of our approa
for these classes of systems is not limited to the react
convection processes considered in this article, but is of g
eral interest in connection with the study of wave propa
tion in random media. For these systems the path avera
technique developed in this article should be combined w
the Shlesinger-Hughes renormalization approach@22#. The
fifth problem is the application of the theory for the mo
complicated case of a chemical oscillation in a hetero
neous system displaying phase diffusion@23#.
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