PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998

Long memory, fractal statistics, and Anderson localization for chemical waves and patterns
with random propagation velocities

Marcel Ovidiu Vlad>? John Ros$,and Friedemann W. Schneider
1Department of Chemistry, Stanford University, Stanford, California 94305-5080
2Center of Mathematical Statistics, Casa Academiei, Boulevard 13 Septembrie No. 13, OPB Bucuresti 5, Romania
3Institute of Physical Chemistry, University of Yeburg, MarcusstraRe 9-11, D-97070 e¢burg, Germany
(Received 31 March 1997; revised manuscript received 7 August) 1997

An analytic approach is developed for computing the moments of concentration fields in a spatially inho-
mogeneous chemical system subject to environmental fluctuations, based on phase linearization. It is shown
that the environmental fluctuations lead to Anderson localization. If in the absence of environmental fluctua-
tions the system displays chemical waves periodic in space and time, then in the presence of fluctuations the
waves become localized in time and space. Two limit cases exist: for homogeneous chemical systems display-
ing chemical oscillations, the environmental fluctuations lead to damped oscillations, i.e., to temporal local-
ization, whereas for structured periodic patterns the localization occurs only in space. The validity of the
suggested approach is tested by investigating the behavior of one-dimensional reaction-convection systems
subject to time-dependent and space-independent velocity fluctuations. Computations are performed in the case
of non-Markovian Gaussian perturbations of the velocity field. Both analytical and numerical calculations
show that the Anderson localization of the concentration patterns is very strong for non-Markovian fluctuations
with long memory characterized by correlation functions of the negative power-law type. For infinite memory
the attenuation factors are Gaussian. For self-similar fractal random processes with long but finite memory, the
localization is less strong and the attenuation factor is given by a compressed exponential and has a shape
intermediate between a Gaussian and an exponential. Finally, for Markovian or independent random processes
the localization is weak and the attenuation is exponential. We suggest an experiment for testing the predicted
theoretical results and discuss the possibilities of generalizing the theory for reaction-convection systems with
thermal fluctuations and for g noise by using the Shlesinger-Hughes renormalization technique.
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[. INTRODUCTION paid to the study of the waves and patterns generated by the
balancing between the convective and diffusive transport and
Anderson localization, i.e., the damping of a quantumthe chemical reactions operated far from equilibrifirj.
wave function in a disordered system, has been studietfowever, the various phenomena investigated, although
within the context of quantum theory of condensed systemégather complex, do not include Anderson localization. The
[1]. Its understanding is of fundamental importance for thePurpose of this paper is to present a theoretical investigation
explanation of the electronic properties of disordered solid§oncerning Anderson localization of a structured chemical
[2]. A temporal analog of Anderson localization is the sto-SYStem with a fluctuating propagation speed. We are inter-
chastic narrowing of line shapes in spectroscé®l More ested in _the_effects of long memory and fractal statistics on
recently, the localization effect has been shown to exist als§€ localization.
for macroscopic classical systems, for instance, in the case of
electromagnetic or acoustic waves propagating in a disor- Il. EVOLUTION EQUATIONS
dered mediun{4]; its study has revealed some interesting | et us consider a multicomponent open chemical system
features of the interaction between the nonlinear behaviogescribed by the deterministic kinetic equations
and the disordered structure of macroscopic systems and has
been th_e bas_is of some a_pplicatiorjs, for example, ir_l biomedi- R=R(C), 1=12,..., (1)
cal engineerind5]. Special attention has been paid to the
study of wave propagation in disordered media obeying fracwhereC,(t),C,(t),... are theconcentrations at timeof the
tal statisticd6]. As far as we know, the possible existence of different chemicals that make up the system &¢C), |
Anderson localization has not been discussed in theoreticat 1,2,..., are net reaction rates. The concentration fields in
and experimental investigations of nonlinear chemical dissithe system are the solution of the balance equations
pative structures, chemical waves, and patterns. Articles of
this subject deal mainly with purely dissipative reaction- aC(r)lat+V-J=R(C), 1=1.2,..., 2)
diffusion systems for which the reversikjeonvective com-
ponent of motion is neglected; for such systems, AndersomwhereJ, are the mass fluxes of different chemicals making
localization is not significant. On the other hand, in the lit- up the system. A complete description of the process can be
erature of chemical engineering, much attention has beegiven in terms of the balance equatids, together with the
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hydrodynamic equations of the system that describe the PLAQ(r',t")]D[AQ(r',t")]

mainstream flow and with the constitutive equations that ex-

press the dependence of the mass flukem the state vari- T

ables of the system. The time and space evolution of the with J J PLAq(r',t")ID[Aq(r' t")]=1,  (8)
concentration fields attached to the different chemicals of the —

system can be computed, at least in principle, by means Qfhere®[Aq(r’,t’)] is a suitable integration measure over
the integration of the coupled evolution equations for suit+,4 space of functionsqy(r’,t'),Aqy(r',t'),... and [T

abl_l?h'n't'all a:_nd bOl%lr:ﬁary c?nt(_jltlons. tiof® d q stands for the operation of path integration. In this case a
€ solutions ot the evolution equatio epend on a periodic solution of the fornt4) does not exist anymore. The

set .Of pararr:eltiqult(r,tt),q2(r,t),..:[, thhat, tl'n tfhe ptresencfe of concentration fields are nonlinear functionals of the fluctuat-
environmental fluctuations, are stochastic functions o spaCf?1gl components of the parameterg(r t),dy(r 1), ...

and time. For example, these parameters may be the compo-
nents of the mainstream velocity at the entrance in the sys- Cu(r,)y=¢[(r,t),Aq(r’ ,t))], 1=12,... . (9
tem or the input or output fluxes of the different chemicals

present in the system. In general, the different concentratio®@ur  purpose is to evaluate the moments

fields Ci(r,t), 1=1,2,... arefunctionals of these param- (C, (r,t1)Cy(r2,t5)---) of the concentration fields in the
eters and depend on the whole previous time evolution ofresence of environmental fluctuations, that is, when the pa-
di(r,t),qx(r,t),...: rametersy;(r,t),q,(r,t),... arerandom. These moments are
given by the path integrals
Ci(r,t)y=G[(r,t);qq.(r",t"),qx(r",t"),...], 1=1,2,....

() =CGL(r,t);d4( ), 0( )yene] @ <Cul(rlat1)cu2(r27t2)'”)
The functional relation§3) can be determined by solving the _ j ' g
balance equation®) with suitable initial and boundary con- €, [(r 1), Ag(r',t)]
ditions.

A particular problem that has been extensively studied in X €y [(r2,t2), Aq(r',t)]---PLAG(r", 1) ]

the literature is that of chemical waves or patterns that )
emerge in the case when the parametp(s,t),q,(r,t),... X DLAg(r’,t)]. (10

are kept constant. In this case the functional relati®s |, 5 chemical system subject to random environmental fluc-
reduce to tuations the observables that are usually accessible to the
experimental measurements are the average concentration
Cu(r,t)zcu[w(k,qg,qg,...)t—k(qg,qg,...)~r], (4 fields(C(r,t)}, that is, the moment&l0) of first order.

where the parametexs(r,t),q»(r,t),... areassumed to be lll. LINEAR PHASE APPROXIMATION
constant: FOR SMALL FLUCTUATIONS

For simplicity we limit ourselves to the particular case
qu(r,)=a3, gu(r,t)=0a3,..., (5 when the fluctuations of the parameters are small. At first
sight a reasonable idea would be to expand the dependence
andC,=Cy(0,) is a periodic function of the phase factor (3) in a functional Taylor series around the periodic solutions
corresponding taAq=0 and to average the corresponding

u=w(k,q&’,q2,...)t—k(q‘l’,qS,...)-r. (6) Taylor series term by term:
The systems described by E¢4)—(6) display concentration Cu(r,H)=C[0,]+ 2 f f ﬁ;”t")
] q;(r-,

waves that are periodic functions in both space and time. A

special situation is that of stationary periodic patterns, for

which the concentration fields are periodic in space and time X E,L(r,1),Aq(r’,t")]
independent; this case corresponds to zero frequency.

In this article we are interested in the study of the more fartme
complicated  situation ~ where  the  parameters XAg(r",t")dr'dt"+--- . 11
gé(nra:; 32&;’;;6 .qf(l)u.c.t.ufa\t\z/evg ei;?gg;m( ;Ngy qar(c;utr;d. th? nsta Unfortunately, such an approach is not useful because it gen-
the form DH2 BB erates secular tgrr_ns thqt Ieaq to physmally absurd results. To
overcome this difficulty in this article we suggest a method
of partial linearization, based on the expansion of the phase
q,—(r,t)=q]°+ Agj(r,t), j=1.2,..., 7 factors in terms of the fluctuating components of the param-
eters rather than on the expansion of the concentration fields.
whereAq;(r,t), j=1,2,..., are theandom components of This method is somewhat similar to the Bogoliubov-

the parametergy(r,t),g,(r,t),..., andassume that the sto- Mitropolski [8] method of harmonic linearization used in the
chastic properties of the random functions are known andheory of nonlinear oscillation, to the Van Kampen cumulant
characterized in terms of a probability density functional expansion method of constructing the solution of stochastic
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differential equation$9], and to Bourret'§10], Novikov's  proximation from quantum mechanics or to the above-
[11], and Furutsu’§4] methods developed for the study of mentioned techniques from the wave theory. Unlike the “na-
electromagnetic or acoustic wave propagation in random meve” expansion (11), the approximation(18) does not
dia. generate secular divergent terms. By combining Ea3)

We start out by considering the periodic solutions corre-and (18) we get the following expression for the instanta-
sponding toAq=0 and expand them in a Fourier series neous concentration fields:

+ 00
. +oe
Cur)=ClO.]=2 GI™ exp(imO,). (12 Cur=3 @™ exgim®,}
= ’ u
For a given realization of the environmental fluctuations,
Ag# 0 and the realization of the concentration fiel€ig(r,t) Xex;)[iz f f sfj'}‘)(r’,t’;r”,t”)
is no longer a periodic function. Nevertheless, it can be rep- ]
resented formally as the superpositions of the contributions
of different amplitude and phase factors: Xqu(r”,t”)dr”dt”+, (19
“+ o
_ ~(m) ’ oyt -~(m) Y
Cu(f-t)—; Gy TAQ(r',t") Jexpli®@y " [Aq(r',t")]}. where the integration kernelg/”(r',t’;r",t") are the func-

(13)  tional derivatives of the phase factdﬂ%m)[Aq(r’,t’)]:

We emphasize that foAg+#0 the expansion(13) is no
longer a Fourier series but reduces to the Fourier séti®ds eM(r " ") =
in the limit Aq—0, that is, we have W

30 Ag(r’,t)]|
5qu(|’”,t”)

| . (20
Aq(r’,t’)=0

cm_,com  gm_, _
Gu G Oy mo, as Ag—0. (14 If the concentration fields are approximated by ELp),

Equation(13) is a convenient representation of the concenthen the path integral in E10) can be easily evaluated. We
tration field by an infinite series, which in the limit case of a introduce the characteristic functional of the probability den-
nonrandom environment reduces to the Fourier sed@s  Sity functionalB[Aq(r’,t") ]D[Aq(r’,t")]:

In general, the representati¢h3) is not unique. In order to

avoid any ambiguities we introduce a seg of mod(ifi;ed ampli-

tude and phase functions, denoted and ®" and I : - PN Ay

defined inpsuch a way that the mod?iszd amplitade 1‘actorsQ5[K(r 't )]—<exp[|f f K(r',t)-Aq(r’,t)dridt ]>

¢{™ are independent of the fluctuation vectin;:

GM=g2%™ independent ofAq, (15 fo expl’iffK(r’,t’)-Aq(r’,t’)dr’dt’}

O™[Aq(r',t')]=0™[Aq(r' t')]

—i In{G{M[Aq(r',t)1/Gy ™}
(16) whereK(r’,t") is a suitable vectorial test function conjugate
to the vector of fluctuating environmental variables
By using the notation in Eqg15) and (16) the expansion Adq(r’,t’). It is well known from quantum field theory as
(13) becomes well as from mathematical statisti¢42] that the logarithm
of the characteristic functiona6[K(r’,t’)] can be ex-
pressed as a multivariate functional Taylor series in terms of
Cu(r,)=2 @™ expli®™[Aq(r',t")]}. (17 the different powers of the components of the test function
o K(r',t") where the coefficients of the expansion are given
The main idea of our approach is that, in the case oby the cumulants({Ad, (r',t;)---Ady (rp.ty))) of the
small environmental fluctuations, the phase factordluctuating environmental variablé¢&2]:
O{™[Aq(r’,t")], rather than the instantaneous concentra-
tion fieldsC(r,t), should be linearized

XPLAq(r't")1D[Aq(r’,t")], (21)

+

In S[K(r',t")]
OM[Aq(r',t")]=mO,+ >, ff 0
u ’ u ] 5qu'(r”,t”) o0 im A A
=> e >y fff f K, (r1.t9)- -
X®Ejm)[Aq(r’yt’)]|Aq(r’,t’)=0 m=1 TE =l np=l
Xqu(r”,t”)dr”dt"+‘" . (18) XKnm(rr’n’tr’n)<<Aqnl(r:’L’ti)...Aqnm(rr’n’tr’n)>>

This approximation is similar to the eikonal approximation L o
from geometrical optics and to the WK@uasiclassicalap- Xdradty:--drpdty,. (22)
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By combining Egs(10), (19), and(21)—(22) after lengthy calculations we arrive at the following expression for the moments
of the concentration fields:

+ o

B +o B
<B]'[1 cuﬁ(rﬁ,tﬁ)>:u_2 e Y equul...uB][!;[l{gﬁ’;m” exdims0,,1}, (23)

— u =—w
B
whereHul...uB is a complex phase factor depending on all cumulants of the environmental fluctuating variables

[

B
Hul'”uB: |n| < ex% IﬂZl 2 j j SE;;J-B)U'vt';r",t”)qu(r”,t”)dr”dt") > ] — E IJH{JJEUB’ (24)

j=1

(.‘““B:né ﬁ: Jiffjjdrldtldr ijfdr dt/drjdt/

B
X S(mﬁn)(rlvtl;rl'tl 2 g 2(ri Lt ) (A, (1 ty)- AQn(rJ ). (29

Bi=1 YpM Bo=1 “B

Equations(23)—(25) give a systematic cumulant expan- the system displays localization in space in the presence of
sion for the contributions of the fluctuations of different or- environmental fluctuations. This effect may be observed in
ders of the environmental variables to the moments of thehe case of an oscillatory chemical reaction operated in an
concentration field. This expression can be used to show thadeal tubular reactor, the case investigated in detail in the
the environmental fluctuations can produce Anderson localremaining sections of the article.
ization. Equation24) is a Taylor expansion in terms of the
different powers of the imaginary unit and in general the

phase factorHul___,uB has both an imaginary and a real part IV. CONCENTRATION FIELDS IN IDEAL

TUBULAR REACTORS
Hoprouy= RO Hy ooy ) +i IMCH,

1

1“‘“8)’ The general approach suggested in the preceding section
to analyze the influence of environmental fluctuations on a
which are made up of the contributions of the even and od@hemical wave or pattern has been inspired by similar ap-
powers in the serief24), respectively. The imaginary part proaches suggested in the literature for electromagnetic and
Im(H,,...u,) Produces an additional contribution to the phaseacoustic waves. In both cases the linear phase approximation
factorsm®,, attached to the different harmonics of the Fou-is used to avoid the occurrence of the spurious secular terms
rier series(12), which results in a change of the frequency and the main assumptions are the same for the two types of
and of the wave vector of the oscillations. On the other handnodels. Despite this formal analogy, the detailed structure of
the real part Ré’(lul ) may lead to either an increase or a the mathematical equations is different for the two types of
decrease of the concentration fields, depending on wheth&odels, mainly due to the different origin of the periodic
Re(Hul---uB)>O or Re(,_{u1mug)>0’ respectively. The gen- behavior. For an acoustic or electromagnetic wave the peri-

. L . . dic behavior is generated by an inertial effect due to the
eral assumptions made in this section are not detailed enou

following sections we have RH(’ Uy )<0, that is, the con- the origin of the oscillations is different: It is a nonequilib-

centration fields display damplng, which corresponds tQjum effect generated by the nonlinear feedback coupling
Anderson localization. In general, for R€( ...,,)<0, the  among the different individual reaction steps. Due to the in-
localization occurs in both space and time. In the special casinsic nonlinearity of the kinetic equations, the evolution of
where the system without environmental fluctuations is hochemical waves or patterns in a random environment is much
mogeneous and displays periodic oscillations in time, in Egharder to study.

(6) for the phase®, we havek=0 and the only effect of For a rather particular case of structured chemical systems
environmental fluctuations is the temporal damping of thea detailed analysis is, however, possible. This case corre-
oscillations. For example, such an effect may be observed iaponds to a reaction-convection system characterized by a
a perfectly stirred continuous reactid@STR with a ran- mainstream flow characterized with a possibly time-
dom flow rate. Another particular case corresponds to thelependent but space-independent overall velocity, which is
situation where the system without fluctuations displays d@he same for all chemicals in the system and for which the
stationary concentration profile periodic in space. In this caseontribution of molecular or turbulent diffusion can be ne-
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glected. Although at first sight these constraints seem to be From the theory of partial differential equations it follows
very restrictive, they are commonly discussed in the literathat the general solutions of the balance equati@6s can
ture for the description of a common device used for thebe expressed as arbitrary functions of the soluti(813 of
experimental study of chemical processes, the reaction tulthe homogeneous kinetic equatiof®9). These arbitrary
[13]. A reaction tubglor tubular reactoris basically a pipe functions can be determined in terms of the boundary condi-
along which a reaction mixture flows under controlled con-tions (27). A simple calculation leads to the following ex-
ditions. The dimensions of the device, as well as the othepression for the time and space variation of the concentration
parameters of the system such as the flow rate and the terfields along the reaction tubsimilar computations are pre-
perature or the pressure, are chosen in such a way that tlsented in the literature of chemical engineeriag,14):

main contribution to the mass transport is given by the main- .

stream flow, the molecular and turbulent diffusion can be C(x,1) =E[C"(n(x,1));t— n(x,1)], (32
neglected, and the flow velocity is basically the same at an
position along the pipe. If the velocity along the reaction
tube at timet is v (t) then the evolution equatiorig) reduce ¢
to x=J v(t")dt’ (33

7(X,t)

zvhere n(x,t) is the solution of the functional equation

ﬁ C(r,t)+v(t) i C(r,t)=R(C), 1=12,.... and E(Cy;t) is the vector of the solutions of the evolution

at Ix equationg29) for the homogeneous system corresponding to
(26) the initial conditionC(t=0)=C,. The vector of solutions

(32) of the evolution equationg26) is determined com-

pletely by the solutiorE(Cy;t) of the kinetic equation&29)

of the homogeneous system and by the functigix,t),

A typical experiment in a reaction tube is carried out by
continuously introducing known amounts of different chemi-

cals at the_ entrance of t_he reaction tu_bexo. i t_he nput which depends on the velocity(t) along the reaction tube.
concentrations of the different chemicals at timeC,(x . . . ; : ;
If the solution of the ordinary differential equations is

— _ ~in _ . .

t;lxo’:r)]_c' (t).’dl _1’21{' fb ar((ejknown fg_r:_ctlonfs o{htlme,t_ |<nown, then Eq(32) allows us to make predictions concern-

d.gn g{y :orow ?aSSGO ounadary conditions for the partia ng space and time dynamics of the concentration fields
ifferential equation$26) along the reaction tube.

C(x=xq,t)=C"(t) with C"(t)=[C"(t)]. (2
( ot) ® = : (U] @9 V. ASYMPTOTIC BEHAVIOR WITHOUT
The characteristics of the partial differential equatit)sare ENVIRONMENTAL FLUCTUATIONS

the solutions of the ordinary differential equations Analytical solutions similar to the solutiof82) of the

dc dx balance equatiof26) have been reported; E(B2) includes
-1 " =12 . (28)  asaparticular case the expressions for the stationary concen-
Ri(C) o(t) tration profiles along a reaction tube presented in the chemi-

o i ) cal engineering literaturfl3,14]. This particular case corre-
The set of characteristic equatiof28) is made up of a set of sponds to the situation where the kinetic equati@s for a

deterministic evolution equations characterizing the timehomogeneous system have a unique stationary p@int
evolution of a homogeneous chemical system with the rate =*(C,) that is globally stable. In this case for large time

equations given by Eql), the transient solutions of the kinetic equations tend towards

dt

dc C=E*(Cy):
| .
E_R'(C) with C(t=0)=C,, 1=12,..., lim E(Co:t)=E*(Cy) (34
(29) t—oo
as well as by the additional relationship independently of. If the same experiment is carried out in a

reaction tube, the propagation speed is time independent
dx/dt=wv(t), (30
v=vg, (39
which gives a Lagrangian description of the flow process. In . . . .
Egs.(29) R(C) are nonlinear functions of the composition @"d the input concentrations are independent of time
vector and because of that Eq29) can be solved analyti- chn(ty=C (36)
cally only in exceptional cases. In the following, however, 0

we assume that the solutions of these equations then in the long run the concentration profiles along the re-

action tube become stationary. In this case we have

n(x,t)=t—xlvg (37)

are known for any values of the initial concentrations and of, 4 from Eqs(32)—(37) it follows that

the time variable; for instance, they have been determined by

numerical integration or from the experimental analysis of lim C(x,t)=C*(x) (39
the system. t—oo

C()=E(Cy;t), ie., C(t)=E,(Cyt), 1=1,2,...,
(3D
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independently oft, where the vectolC* (x) of stationary -
concentration profiles is given by the transient solution of the o =5 Cl(t+a)da (46)
kinetic equations of the homogeneous system with the time e

variable replaced by the residence time of the fluid elementgre the temporal averages of the concentrations, and
in the reaction tube at position

) +alw

(m)zi +7lw . N
C* () =E(Co3 (X)), 39 W "or )y, SHTlemaCi(trajda, (47
with ) talo 2
Aﬁm):; f sinfoma)C¥ (t+a)da
L(X)=xlvg. (40) —mle
+ale 2) 12
In particular, for very long reaction tubes—o, the vector + f cogwma)Cy (t+a)da J , (48
of stationary concentration profiles tends towards the station- mmle
ary point of the kinetic equation€l) of the homogeneous ol
system o™= arctar{ f sin(wma)
-7l
lim C*(x)=E*(Cy) (41) -
X0 ><C{j(t+a)da/ f cog wma)
-7l
independently ok.
LL thg follqwing we appl_y our general relation to the more XC*(t+a)da (49)
interesting situation in which, in the long run, the homoge-

neous system tends towards a normal kinetic regime that is .
variable in time, independent of the initial preparation of the@'® the complex and real amplitudes and the phase angles of

system, and corresponds to a stable limit cycle the_diﬁerent harmonics, respe_ctively. The stationary concen-
tration profiles along the reaction tube can be expressed by a
lim C(t)=E*(t) (42)  similar spatial Fourier series
t—o +

* — (m) ;
independently ofC,. We start out by considering the par- Cux) _Ew 9u expimkx)

ticular case where the velocity along the reaction tube is .
constant and therefore the functiof(x,t) is given by Eq. ~

(37). In this case, after a sufficiently large time the concen- =Ci +mE:1 A cogmkx— (™), (50
trations along the reaction tube become statioriaey, time

independentand are functions only of the positian In  where the wave numbéris given by the dispersion relation
particular, if for the homogeneous system the asymptotic be-

havior corresponds to a stable limit cycle, then the vectorial K=volw. (52)

function E* (t) is made up of components that are periodicThys we have shown that in the long run the concentration
functions of time[15]. In this case the corresponding inho- profile is a time-independent periodic function of position.
mogeneous system displays periodic stationary chemical pat- strictly speaking, for a stable limit cycle the normal solu-
terns along the reaction tube, characterized by a periodigons =* (t) of the kinetic equationgl) of the homogeneous

space variation of the corresponding chemicals system are different for different initial conditions. However,
_ _ . their shape is identical, that is, they are the same up to a
lim C(x;t)=C*(x) (43 constant phase difference. In mathematical terms, given two

t—oo

normal solutions=7;(t) and Ef(t), the solutionE(;(t)
) . . :
independently ot, where the stationary vector of the con- ¢@n be obtained fror&,(t) and vice versa by changing the

centration field<C* (x) is given by origin of the time axis. The two solutions are characterized
by the same amplitude facto& andA{™ and the differ-
C*(x)=E*(£(X)). (44) ences between their pha&ggl)) and @E,’("z)) is independent of

time and proportional to the harmonic lalwel Similarly, the
We express the components of the normal soluEdrit) in  stationary concentration profiles given by Eg7) have the
a temporal Fourier series same shape for any values of the boundary conditions at
=Xg and only their phases are different.

+ o
Eﬁ(t)=§ gy" explimot) VI. ANDERSON LOCALIZATION IN TUBULAR
REACTORS
—C* 4+ AM™ cogmaot— ™), 45 The next step in our analysis is to consider the more gen-
“ mE:l " g eu) “9 eral case for which the speed along the reaction tube is made

up of two components: a constant componggptand a ran-
wherew/27 is the frequency of the limit cycle, the terms  domly fluctuating componeniv(t),
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v(t)=vot+Av(t). 52 X

(V=vordult 2 fOG<y><b<x—y>dy: 5(x). (56)
As we are interested in the influence of long memory on
localization, we assume that the stochastic process describ- Due to the fluctuations of the velocity along the reaction
ing the random behavior of the fluctuating compongn(t) tube the concentrations of the different chemicals are fluctu-
may have certain self-similar statistical fractal features. Weating quantities. For a given realization of the stochastic pro-
make the following choicega) the moments and cumulants cess the concentrations are no longer stationary but depend
of Av(t) are finite and the statistical fractal features areon both space and time. Nevertheless, in the long run their
given by the shape of the correlation functions, which ardime and space variation can be expressed in terms of the
assumed to be described by negative power laws of time, arféourier representatio(60) of the limit cycle corresponding
(b) the moments and cumulants &6 (t) are infinite and the to the chosen homogeneous system
stochastic process is of thé \netype. In this article we limit
ourselves to the study of casa; work on Levy statistics is +oo
in progress and will be presented elsewhere. We assume thﬁttj[Au(t’);x,t]=Z o™ explimo{t— [ Av(t');x,t]}).
the fluctuations of velocity are symmetric, small, and de- —
scribed by a stationary Gaussian stochastic process. The sto- (57)
chastic properties of a Gaussian stochastic process are com- . ,
pletely characterized by its cumulants of first and second this case both the random realizatioB§[Av(t');x,t]
order. For Gaussian statistics, since the stochastic process38d the functionz[Av(t");x,t] are functionals of the ran-
symmetric and stationary, the cumulant of first order ofdom contributionAv(t) to the velocity along the reaction

Av(t), ((Av(t))), which is the same as the average valuetube. The macroscopic concentration fields are ensemble av-
(Av(t)), is equal to zero erages with respect to the fluctuations&of (t). These en-

semble averages express the mean behavior of a statistical
ensemble of realizations of the tyg87) and can be ex-
((Av(t)))=(Av(t))=0, (53)  pressed as a path integral in terms probability density func-
tional (55),
and the cumulant of second order ofAv(t),
((Av(ty)Av(t,))), which is the same as the correlation (CE[Av(t');x,t])
function{Av(t;)Av(t,)), is symmetric and depends only on

the absolute value of the time differences and is independent = (m) i ,
of the individual times =f f 2 9™ explimo{t—7[Av(t'):x.t]})
XP[Av(t")D[Av(t')], (58)

((Av(t)Av(tp))) =(Av(t)Av(tp)) =P (|t —t5]).
(54 where [ [ stands for the operation of path integration.
Since we have assumed that the fluctuations of the com-
Different ~expressions for the correlation function ponent Av(t) are small, most realizations akv(t) are
@([t;—t,|) correspond to different types of stochastic pro-smaller than the constant componentand the functional

cesses. Ifb(|t;—t,]) is independent of time, then the pro- ;[ Ay (t');x,t] can be approximated by the sum of the first
cess has infinite memory, whereas for a negative power-lawyo terms in its functional Taylor expansion

dependence the process has long but finite memory. Simi-
larly, for a Markovian process with short memory the corre-
lation function is an exponential and for an independent ran-
dom process without memory is given bysdunction.

The probability of a fluctuating path attached to the +J e(x,Lt")Av(t")dt’, (59
Gaussian stochastic process introduced before can be char-

lAv(t");x,t]=y[Av(t")=0;x,t]

type: derivative
, ’ SnlAv(t')=0;x,t
PlAv(t") ]D[Av(t")] e L") = Ul gi )” ] (60)
1 4o [+ U(t )
=exp — 5 G[|t,—t
pr 2 ffoc ﬁm [t =tal] The first term in the expansiofd9) is given by the function

nl[Av(t");x,t] corresponding to a constant velocity and
XAv(tl)Av(tz)dtldtg] D[Av(t))], (55 can be computed from E@37):

g[Av(t")=0;x,t]=t—xlvg. (62
where®[Av(t')] is the usual Gaussian Wiener integration
measure12] and G(x) is the solution of the convolution Similarly, the coefficients(x,t,t”) can be computed by re-
equation writing Eq. (33) in the form
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t
Av(t)dt’

x=vo{t—U[Av(t’);xyt]}+fn[Av(t,).xt]
B (62)

and by evaluating the variation of[ Av(t’);x,t] with re-
spect tosAv(t’) and by makingAv(t')=0 in the resulting

expression. After performing these computations we obtain

s(x,t,t”)— ! (63

{3
o(t)—o t_v_o ,

where 6(t) is the Heaviside step function. By using Egs.

(59)-(63) we can express the path averd§8) in the form

+ oo

(CH[Av(t');x,t])= 2 g™ TM(x,t)exp(imkx),
(64)

whereT(M(x,t) are amplitude factors given by the Gaussian

functional integrals

f p(—%f | ettt

X Av(tl)AU(tz)dtldtz

TM(x,t)=

Jrimkft / Av(t’)dt')’D[Av(t’)]. (65
t=Xlvg

The path integral in Eq(42) can be evaluated analyti-
cally, resulting in

TM(x) = exp[ - ﬂ j(i) (66)
- (o) “\vo/ |’
independently of, where
B
J(ﬁ)=f0 (B=u)®(u)du. (67)

We notice that the amplitude factof&™(x) are real and
symmetric with respect to the harmonic lamel[ T("™(x)
=T("™(x)] and independent of time. It follows that the
average concentration profilé€; [ Av(t');x,t]) can be ex-
pressed in the form

<C3[Av(t’),x,t]>:E’J + E Afjm) Cogmkx_ (PEJm))T(m)(X)
m=1

=Cr+ Z A™ cogmkx— ™)

m?w? | x
X exp — —
Uo

W Mool | 9

independently of.
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q
<H o [Av(t'>;x,t]>
B=1

to 4w g q
T3 I aesd | £ mg
X w{t— [ Av(t');x,t]} B[ Av(t")]D[Av(t")].
(69

In Eq. (69) for small speed fluctuations the ensemble average
can be expressed also in terms of the amplitude factors
TM(x,t). After some calculations we obtain

q
<H c [Av(t'):X,t]>
B=1

+
8

+e g
(myg) (mg)
AP cogmugkx—oe AT
i E: Hl{ ug 4 '8 (P“B 1

X exp( 2 mﬁ) (x),
B

(70

where

AP=cr, =0 (72)
From the above calculations it follows that, even though
for a fluctuating speed the different realizations of the con-
centration fields are functions of space and time, their en-
semble averages are time independent. Concerning the space
dependence, we notice that in the spatial Fourier s¢igs
each harmonic term is damped with a factéf’(x). This
behavior corresponds to the Anderson localization of the
reaction-convection chemical patterns. The intensity of
damping of the harmonien can be characterized by the
damping factoim(™(x), which, for fluctuations of the veloc-
ity field different from zero, decreases from the maximum
value TM(x=0)=1 to zero in the limitt—o. In terms of
this factor we can define a damping length sdai@. In
analogy to the Anderson length scale from the literature

[1,2], )\gm) corresponds to a decrease of the damping factor

T(M(x) from the initial value 1 toT™M=1/e. A{" is the
solution of the equation
m2w? )\ém)
—In[TM™(x)]=—>% J —|=1. (72)
(vo)* '\ vo
The reciprocal value ok{™,
e™=1n\{", (73)

is a measure of the strength of the localization of the
convection-reaction chemical patterns.

The strength of localization is determined by the type of
stochastic process describing the fluctuations of the main-

The superior moments of the concentration fields can bstream velocity. We consider the following particular cases.

computed in a similar way. In particular, the moments of

orderq at positionx can be written as

(i) Systems with static disorddfor such systems the fluc-
tuations of velocity, once they have arisen, last forever. The
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stochastic process describing the speed fluctuations has infi- ) Q(vg)3
nite memory and the correlation function is constant, A" ~ oA [Av(0)]5) 0>0. (89

((Au(ty)Av(t2)))=(Av(ty)Av(ty)) =, (74 (iv) Independent fluctuationsn this case the fluctuations

of speed are independent and the correlation function is rep-

the damping factors have a Gaussian shape resented by & function

m2w2<D A A =P _ — —
TM(x)=exg — o? x?|, (75) (Av(t)Av(ty)) =D (|t;—to]) =2Ded(|t1 —t5]), (86)
Vo
where D is an effective diffusion coefficient. In this case
and the damping length is given by the amplitude factors have an exponential shape
(m) — 2 D, 7 2m?w?D
A= (o) Mw P (76) T(m)(x):exp[_ o e | @7
(i) Self-similar (statistical fractal) fluctuationsln this °
case the correlation function of fluctuations has a long tail of (vo)®
, (m__ 270
the negative power-law type N =r7o7h - (88)
€

(Av(t)Av(tr)) = D([ty —to) = Mty —ta] 77, Equations86) and(87) are a particular case of Eq&0) and

(81) derived for Markovian fluctuations. Equati@dB6) can
be derived from Eq(80) by assuming that the rat® of

. .. fluctuation regression tends to infinity and the dispersion of
where > ¢>0 is a fractal exponent between zero and unlty.Speed fluctuzgtior([Av(O)]Z) tends tg 7610 subjecr'z to the

The amplitude factors and the localization length are 9iverL - ctraint that their product remains constant:

M>0, 1>0>0, (77)

by
m2ew2 M Q—», ([Av(0)]*)—0
TM (% :ex[{— — , (78
) (I-0)(2=0)(0g)" " 9 With D= L0([Av(0)]%)=const. (89)
- (1—0)(2—0)(vg)*~ oMz~ The limit (89) is of the diffusion type.
Ng = M2 M (79 The above analysis shows that the Anderson localization

of a reaction-convection chemical pattern is influenced by

(iii) Markovian fluctuations.For Markovian fluctuations the type of stochastic process describing the dynamics of
the correlation function of the velocity decreases exponenvelocity fluctuations. The localization effect increases with

tially with increasing time differencet{—t,): the memory of the stochastic process. For infinite memory
the damping factors are Gaussian. For finite, self-similar
(Av(ty)Av(ty))=d(|t;—ty]) long memory the damping of the chemical patterns is less

5 pronounced and is described by a stretched exponential. For
=([Av(0)])exd —Qfti—t5[], (80  Markovian processes with short memory the localization of
chemical patterns is even slower and the tails of the attenu-
ation factors are exponential. Finally, for independent ran-
dom processes without memory the localization is exponen-
2 2 2 tial for any distance, short or long. Further the analysis

m“w<([Av(0)]°) X . e
TM(x)=expl — ————5—>— shows that there is a close relation between localization and
(v0)°Q the self-similar features of the fluctuations: For the system
Ox ;{ )H studied long memory corresponds to self-similarity and as

where () is the decay rate of the velocity fluctuations. We
have

X|——1+ex (81) the strength of the memory effect increases, the efficiency of
Yo the localization increases.

To illustrate this effect we have performed a numerical
udy of localization in a reaction convection system of the

el’kov type[16]. The Sel’kov model is given by the reac-

In this case the damping length cannot be evaluated analytg-t
cally in the general case. We distinguish two subcategoriesS
(a) Slow fluctuationgQ2~0). We have

tion scheme
m?w?([Av(0)]%) k k k
T(m)(x)=ex;{— TO)A;XZ} Q~0 (82 A<:’Jr X, X+ 2Y<£23Y. YésB, (90)
k*l k—2 k*3

A= (vo) M ([Av(0)]%), Q~O. (83 whereA andB are stable species with concentrations kept
constant by an interaction with large external reservoirs and
X andY are reaction intermediates with concentrations vari-
able in time. In a homogeneous system the reaction mecha-
. Q>0 (84 nism (90) may display a stable limit cycle for certain values
of the rate coefficients and of the concentrations of stable

(b) Fast fluctuationg2>0). We obtain

m?w*([Av(0)]?)
T(m)(X) =exp — W X
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<C(x,k)>
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FIG. 1. Space and wave-number dependence of the stationary FIG. 2. Space and wave-number dependence of the ensemble
concentration field of the active intermedia¥e for the Sel'kov  average of the concentration of the active intermediatior the
model operated in an infinite reaction tube. The concentration proSel’kov model operated in an infinite reaction tube and subject to
file is stationary, periodic both in position and in wave numker  random velocity fluctuations with infinite memory. The localization
and is invariant to the permutation rfandk. is very strong and, although the different random realizations of the

concentration profile are time dependent, the ensemble average is
speciesA andB. The kinetic equations of the Sel’kov model stationary and invariant to the permutationxoéndk.
(90) are integrated numerically. For large times the process is

approaching a stable limit cycle and the time variatioXof  fig|q is still symmetric with respect to the permutationyof
Ian_d Y” becomes p?nodm. Thle pen;)dr:c motion ,)éf'fs ana- - and k. For long but finite memory the fluctuations of the
ytically continued for any values o .t & ime axis, frofre random component of the velocity are self-similar and the
to +, and the corresponding function are subject to FOUI’IGEO alization effect is still strong; however, in this case the
analysis; we have computed the phases and the amplltudes||8 alization effect acts in different ways along the axes, re-

the f|r§t ten ha(monlcs. By using the general analysis deveépectively (Fig. 3. For both Markovian and independent
oped in this article the Fourier components are used to com-

pute the periodic stationary patterns that emerge for IOngrocesses the localization is weak. The results of our numeri-

times in a reaction tube characterized by different flow rates al computations are practically identical in these two cases

To avoid the complications generated by the nonperiodic belS€€ Fig. % we cannot identify any differences because of

havior of the concentration profiles at the beginning of thel limited number of harmonics used in our computations.
these two cases the symmetry of the localized field with

reaction tube we have assumed that the reaction tube has : .

infinite length and that the chemicals are introduced into thdespect to the permutation &fandk is restored.

system either akg— —o or atxy,— +9%. According to the

dispersion relation(51), different propagation speeds,

along the reaction tube correspond to different values of the

wave numbek=v,/w. The wave number, just like the co-

ordinatex along the reaction tube, can take any real value

from —o to +. A positive value okk=v,/w corresponds

to a positive value ofvy and in this case the reagents are <C(xk)>

introduced into the system &g— —oo; similarly, a negative

value ofk=v,/w corresponds to a negative propagation ve- 24

locity and in this case the chemicals are fedg@t +. For

an infinite system without fluctuations the concentration field

is a double periodic function in botk andk. Figure 1 dis-

plays a three dimensional representation of the concentratio

of the chemical specieX as a function of position and the

wave vector. Notice the perfect symmetry of the field with

respect to the permutation of variablesndk; this symme-

try is a consequence of the structure of the Fourier represer:-

tation (50) of the concentration field. _ FIG. 3. Space and wave-number dependence of the ensemble
In addition, we have investigated the effect of different ayerage of the concentration of the active intermedittor the

types of noise on the dependence of the concentration fielgekov model operated in an infinite reaction tube and subject to

Figure 2 displays the localization effect due to stochastiGandom velocity fluctuations with long but finite memory character-

fluctuations with infinite memory. In this case the localiza-ized by a fractal exponerii=1.2. The localization is still strong

tion effect is very strong; it is interesting that in spite of the and the ensemble average is also stationary, but it is no longer

localization in space, for infinite memory the concentrationinvariant to the permutation of andk.
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excess, then for small to moderately large distances from the
entrance in the reactor their concentrations are practically
constant and the concentrations>fandY are approaching

a periodic regime corresponding to a limit cycle. For large
values of the space coordinate, however, the concentrations

<C(x.k)>
o i \ i of A andB are no longer constant, the oscillationsXrand
401 ‘ d“\\\‘All"\w ‘ “’ Y are damped, and eventually the limit cycle is destroyed.
30\ 1\“\\\\\\\\\\ " (v) If the mainstream velocity is subject to a small random
21%l ‘ \\\\\\\‘\\ ‘(‘ H \ | perturbation described by a stationary Gaussian random pro-
0 | “\\ Ll i cess then the ensemble average of stationary concentration
i

fields displays the phenomenon of localization. The station-
ary chemical patterns are no longer periodic, but display
damped oscillations along the reaction tube. The strength of
localization depends on the memory of the velocity fluctua-
tions and increases with increasing memory effects.

The results presented in this article have been derived by

FIG. 4. Space and wave-number dependence of the ensembising a method of phase linearization that is less restrictive
average of the concentration of the active intermedkator the 1,510 the linearization of the kinetic equations. Within our
Sel’kov model_ operated _|n an |r_1f|n|te reaction tube and_ subject toapproach the underlying deterministic kinetic equations are
random velocity fluctuations with short memofiarkovian or  \oniinear and no attempt has been made to linearize them.
ggzgﬁ;?we;c&%\g;;lncﬁzl|tzr?élon rlfnwte?ik,nthir?giemble average srhe assumption made is that the main contribution of the

y permiiiation:o ' velocity fluctuations of the phases of different chemicals is

of first order with respect to the variatidxw of velocity. Our
technique is a stochastic analog of the Bogoliubov-

The main results obtained in this article are the following.Mitropolskii technique of harmonic linearizatiof8]. Our

(i) A general approach for analyzing the behavior ofanalysis shows that even the slightest fluctuations of velocity
chemical waves and patterns in a random medium with smalkad to the localization of the chemical patterns.
fluctuations has been developed, based on the method of The example used to illustrate our approach has been ana-
phase linearization. The approach leads to a cumulant seriyed by assuming the validity of the model on an ideal
expansion expressing the contributions of environmentajubular reactor. Although very popular in the literature of
fluctuations to the moments of the concentration fields. chemical engineering, this model gives only an approximate

(i) It has been shown that the environmental disorderlescription of the real systems. For laminar flows there are
may lead to Anderson localization. distinct velocity variations in the radial directianormal to

(i) The general approach developed in the article hashe flow). In such a case the flow cannot be described as
been applied for the evaluation of the average concentrationniform in the radial direction, but may be approximated by
fields in the case of a chemical oscillator operated in ara plug flow on which gTaylor) axial dispersion is superim-
one-dimensional ideal tubular reactor. posed. On the other extreme of strong turbulence, the longi-

(iv) If the time evolution of a chemical oscillator operated tudinal turbulent dispersion may have an important contribu-
in @ homogeneous, well-stirred reactor is approximated for gsion to the mass transport. Despite these limitations, we
finite period of time by a stable limit cycle, then the samebelieve that the application of our approach to the case of
process operated in a reaction tube with constant velocitideal tubular reactors is more than a simple academic exer-
displays periodicity in space for a finite characteristic lengthcise: A detailed theoretical analysis is possible yet, despite
Theoretically, if the chemical oscillator operated in a homo-its simplicity, it leads to Anderson localization.
geneous reactor evolves towards a time-dependent normal An interesting problem is related to the possible experi-
regime corresponding to a stable limit cycle, then the samenental identification of the localization of reaction-
process operated in a reaction tube with constant velocitgonvection chemical patterns. The analysis presented in this
tends towards a stationary regime characterized by chemicplper is based on the assumption that the velocity fluctua-
patterns periodic in space. Although this statement is mathtions along the reaction tube are space independent. Such an
ematically correct, it is very hard to find a real chemical assumption holds for relatively slow chemical processes for
system for which it actually occurs. In the first place, even inwhich the chemical time scales are at least an order of mag-
a homogeneous system, a stable limit cycle cannot be maimitude smaller than the mechanical time scale characteristic
tained forever. In the case of the Sel’kov model considereaf the propagation of the velocity fluctuations along the re-
in this papefEq. (90)] the limit cycle may occur only if the action tube. We suggest an experimental installation of a
concentrations of stable specksindB are kept constant. In  computer-controlled pump coupled to a tubular reactor and
a closed homogeneous system the time invarianok ahd  repeated measurement of the concentration profiles along the
B can be accomplished for a finite time period by introduc-reaction tube corresponding to different realizations of the
ing initially a large excess of these two reagents in the sysfluctuations of the speed generated by the computer. If the
tem. As the process goes on, eventually the concentrations atimber of experiments is large enough we predict that the
A andB vary in time, resulting in the destruction of the limit ensemble average of the concentration profiles evaluated
cycle. A similar phenomenon takes place in an ideal reactiofrom the measured data displays localization. Because of the
tube. If in the input flux the reagen®s andB are in large limitations of the model of ideal tubular reactors, we do not

VII. DISCUSSION
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expect quantitative agreement with the theory; neverthelesshe ensemble. As the strength of fluctuations increases with
we predict localization. the increase of the memory effects it follows that for long
At least in principle, the general approach suggested irmemory the destructive interference leads to stronger damp-
this article can be applied to any structured chemical systening, which is consistent with the results of our calculations.
involving various phenomena such as molecular or turbulent Concerning future research, five general problems arise.
diffusion, mainstream hydrodynamic flow, and nonlinearThe first problem is related to the possibilities of generaliz-
chemical reactions. However, the application presented ig1g our approach for processes in which diffusion cannot be
limited to the study of convection-reaction systems. Theneglected. In view of the general considerations about
mathematical structure of these systems makes possibleraaction-diffusion systems mentioned above, we normally
detailed analytical treatment of the problem of Anderson lo-expect that in this case stationary patterns do not exist; how-
calization. The majority of the physicochemical literature ever, the Anderson localization can be present also in the
dealing with inhomogeneous nonlinear chemical systems;ase of nonstationary fields. The second problem is of the
however, consider only reaction-diffusion systems. The sointeraction between the internal thermal fluctuations of the
called chemical waves are completely different from the pesystem and the external fluctuations of the mainstream ve-
riodic patterns considered in this article. A chemical wave idocity. This type of problem can be dealt with by using the
generated by the competition between a chemical procegkeory of processes with dynamical disorfl2@]. To solve it
and molecular diffusion. Because of this, the veloaitypf  we should develop a Fourier analysis of fluctuating concen-
propagation of a chemical wave increases not only with intration fields and suitable methods of dynamical averaging.
creasing diffusion coefficierd but also with increasing re- The third problem is the investigation of the influence of

action rateR environmental fluctuations in systems displaying quasiperi-
odic or chaotic behavidr21]. The fourth problem is related
v~+DR. (91  to the generalization of our approach for the case when the

. . ) ... moments of fluctuation are infinite and the stochastic process
Therefore_, a perturbqtlon of a nonlinear reacthn dlffuszlonobeys Ley statistics; for this type of system the tails of the
system will spread quite fast and the corresponding propaga;iopability distributions display self-similarity rather than
tion rate is process dependent. For such a system the normgly ¢qrrelation functions. The generalization of our approach
behavior corresponds to the generation of nonstationanyy these classes of systems is not limited to the reaction-
phase waves rather than the stationary patterns characterisfignection processes considered in this article, but is of gen-

of reaction convection systems discussed in this articleg g jnterest in connection with the study of wave propaga-
However, even for a pure reaction-diffusion system a stationgiop, jn random media. For these systems the path averaging
ary pattern can be observed under certain conditions. It hagchnique developed in this article should be combined with

been shown on the basis of local bifurcation theory that;, Shlesinger-Hughes renormalization approf2®. The
standing waves may be found in systems with at least threggy, problem is the application of the theory for the more

variables and unequal diffusion coefficiefitsng-range cou-  compiicated case of a chemical oscillation in a heteroge-

pling [17-19). The type of stationary pattern discussed inpqqus system displaying phase diffus(@3].
this paper is different; it is generated by the balance between

the generation and consumption of the chemicals and the
convective transport. We expect that our description is fairly
correct for systems for which the convective transport out-
weighs the contribution of molecular and turbulent diffusive  We thank Professor S. Fujieda, Professor T. Matsumura-
transport. Inoue, and Professor I. Hanazaki for their hospitality and

An interesting problem is related to the interpretation ofProfessor E. Kms, Professor F. Moran, Professor S. C.
the relations between the memory of the speed fluctuationsililler, Professor A. Muster, Professor |I. Nagypal, Profes-
and the localization effect. The localization displayed by thesor P. Ruoff, Professor I. Schreiber, and Professor T.
ensemble average of the concentration profile is due to th¥amaguchi for useful discussions. This research was sup-
destructive interference of the different realizations of theported in part by the U.S. Department of Energy, Basic En-
relative fluctuations of the concentration fields that make ugergy Science-Engineering Program.
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